Showing posts with label SONY TV. Show all posts
Showing posts with label SONY TV. Show all posts
Friday, July 1, 2016
SONY KDL-42W800A - Service mode - LED Blinking and fault finding - Power supply Schematic diagram - LED Television repair and service
Category: LED Television Repair and Service
Contents of this article
- How to access self diagnostics
- How to activate Service mode
- LED blinking code and causes
- Power supply circuit
SONY KDL-42W800A
SERVICE MODE
How to enter the Service Mode
Service adjustments to this model can be performed using the supplied Remote Commander RM-ED011.
1. Turn on the power to the TV set and enter into the stand-by mode.
2. Press the following sequence of buttons on the Remote Commander.
1. Turn on the power to the TV set and enter into the stand-by mode.
2. Press the following sequence of buttons on the Remote Commander.
(ON SCREEN DISPLAY) > (DIGIT 5) > (VOLUME +) > (TV POWER)
4. Move to the corresponding adjustment item using the UP or DOWN arrow buttons on the Remote Commander.
5. Press the RIGHT arrow button to enter into the required menu item.
6. Adjust the data value using the UP or DOWN arrow buttons on on the Remote Commander.
7. To go back at any time press the ‘Return’ button on the Remote Commander.
8. Press the ‘Menu’ button on the Remote Commander to quit the Service Mode when all adjustments have been completed.
5. Press the RIGHT arrow button to enter into the required menu item.
6. Adjust the data value using the UP or DOWN arrow buttons on on the Remote Commander.
7. To go back at any time press the ‘Return’ button on the Remote Commander.
8. Press the ‘Menu’ button on the Remote Commander to quit the Service Mode when all adjustments have been completed.
Note : To place the Remote Commander in ‘Service Mode’ press the following buttons together for two seconds.
(ON SCREEN DISPLAY) > (DIGIT 5) > (VOLUME +)
To use the Remote Commander in ‘Service Mode’ press the rewind button on the Remote Commander twice.
TT will then appear in the bottom right hand corner of the TV.
To take the Remote Commander out of ‘Service Mode’ press the same buttons above together again for two seconds or remove the batteries from the Remote Commander.
After carrying out the service adjustments, to prevent the customer accessing the ‘Service Menu’ switch the TV set OFF and then ON again.
After carrying out the service adjustments, to prevent the customer accessing the ‘Service Menu’ switch the TV set OFF and then ON again.
SELF DIAGNOSTIC SOFTWARE
The identification of errors within the EG1L chassis is triggered in one of two ways :- 1: Busy or 2: Device failure to respond to IIC. In the event of one of these situations arising the software will first try to release the bus if busy (Failure to do so will report with a continuous flashing LED) and then communicate with each device in turn to establish if a device is faulty. If a device is found to be faulty the relevant device number will be displayed through the LED (Series of flashes which must be counted).
LED Error Codes
Number of LED Flashes | Error Description | Action |
02 | DC_DET (12V main voltage). | Goes into standby and LED flashes. |
06 | Panel Det error. | Goes into standby and LED flashes. |
07 | Internal temperature error. | Goes into standby and LED flashes. |
08 | Audio error (SP protection). | Goes into standby and LED flashes. |
10 | Digital error. | Adds error to error menu. |
11 | NVM error. | Adds error to error menu. |
12 | I2C error VCT. | Adds error to error menu. |
13 | Balancer error. | Goes into standby and LED flashes. |
14 | HDMI error. | Adds error to error menu. |
15 | Tuner Error | Adds error to error menu. |
16 | I2C CH1 (VERD TAS). | LED error. |
17 | I2C CH0 (VERD NVM/RTC). | LED error. |
18 | Digital demod. | Adds error to error menu. |
19 | USB error | Adds error to error menu. |
20 | CI error | Adds error to error menu. |
21 | VCT error | LED error. |
22 | MSP error. | Adds error to error menu. |
Self Diagnostic Screen Display
To bring up the self diagnostic screen display
In standby mode, press the following sequence of buttons in quick succession on the remote commander as shown below:
In standby mode, press the following sequence of buttons in quick succession on the remote commander as shown below:
(ON SCREEN DISPLAY) > (DIGIT 5) > (VOLUME +) > (TV POWER)
POWER SUPPLY CIRCUIT
CLICK ON THE IMAGE TO ZOOM IN
SONY KDL-32EX40B – Power supply Trouble shooting – Led blinking codes and causes – Tcon Board troubleshooting – LCD televisions repair and service
Category: LCD Television Repair and Service
Contents of this article
- Power supply troubleshooting
- Tcon board troubleshooting
- LED blinking and causes
SONY KDL-32EX40B
Power Supply Troubleshooting
Failures in the power supply circuits that prevent the unit from turning on are caused by one of the following scenarios:
# Complete failure of the standby and main power supplies
# Failure of the main supply including the main switching regulator, PFC circuit, main relay and other components required to turn the circuits on.
# The power supply is not receiving a turn-on command from the CPU
Completely Dead Set
A complete power supply failure is generally the result of severe transients in the AC line such as those incurred during an electrical storm. The EX40B model line utilizes a red standby LED located on the lower left front bezel that is lit whenever the unit is receiving AC power and is turned off. These models incorporate a, “eco” switch located on the lower right side which, when turned off, remove all AC power from the unit and produces the same symptom of a unit that has been unplugged or lost its AC power. This switch should be checked first whenever the standby LED is not lighting.
Won’t Power On
This situation assumes that the red standby LED is lit when AC power is applied to the unit. A lit standby LED indicates that the standby power supply is operational, and the CPU on the BAL board is at least partly operational. In this case it is likely that the main power supply is either not being turned on or it has failed.
Failures in the power supply circuits that prevent the unit from turning on are caused by one of the following scenarios:
# Complete failure of the standby and main power supplies
# Failure of the main supply including the main switching regulator, PFC circuit, main relay and other components required to turn the circuits on.
# The power supply is not receiving a turn-on command from the CPU
Completely Dead Set
A complete power supply failure is generally the result of severe transients in the AC line such as those incurred during an electrical storm. The EX40B model line utilizes a red standby LED located on the lower left front bezel that is lit whenever the unit is receiving AC power and is turned off. These models incorporate a, “eco” switch located on the lower right side which, when turned off, remove all AC power from the unit and produces the same symptom of a unit that has been unplugged or lost its AC power. This switch should be checked first whenever the standby LED is not lighting.
Won’t Power On
This situation assumes that the red standby LED is lit when AC power is applied to the unit. A lit standby LED indicates that the standby power supply is operational, and the CPU on the BAL board is at least partly operational. In this case it is likely that the main power supply is either not being turned on or it has failed.
Service Tip: If the standby LED is lit but the unit will not power on, remove AC power from the unit. This can be done by unplugging the AC cord or turning off the “eco” switch. Wait about 6 minutes and re-apply AC power. You should hear a distinct click of the main relay which will engage for about 5 minutes before releasing again. If the relay clicks on, the poweron command line from the CPU is functional and the problem most likely resides on the power supply board. Use the power-on button on the right side of the unit to attempt a turn-on and eliminate a defective remote control system.
Protection Shutdown
Critical voltages and circuit operations are monitored by the CPU on the BAL board. If a fault is detected the unit will be forced to shut down by the CPU. The monitored circuit in which the fault occurred will cause the CPU to flash the standby LED in groups of repeating sequences. The number of blinks in these groups identifies which voltage or circuit caused the protection event.
Not all of the available protect codes are used. Models that are LED backlit do not use the 4-blink balancer error as this circuit is found in models that are backlit with fluorescent lamps. The following list contains the protect circuits and diagnostics codes used in the EX40B models.
2X: A loss of REG12V from the power supply triggers this protect event. The usual cause is a failure of the main switching supply. In some instances, excessive loading on the secondary supply lines can cause the switching regulator to stop, or fail again, if a replacement board is installed.
3X: The REG 5V and D3.3V source originating on the BAL board is monitored for low-voltage conditions by CPU IC5000. A failure causing a 3X shutdown would require replacement of the BAL board.
5X: A communications error with the high frame-rate or timing control circuits has occurred. Since both of these circuits are located on the TCON board, replacement of the board should remedy the problem. In rare cases a loose or defective LVDS cable could be the cause. If the TCON board is not available as a separate part, the entire LCD panel must be replaced.
6X: If the inverter circuits fail to generate high voltage or one or more of the backlight lamps fails to light, the television will shut down and display this diagnostics error.
Critical voltages and circuit operations are monitored by the CPU on the BAL board. If a fault is detected the unit will be forced to shut down by the CPU. The monitored circuit in which the fault occurred will cause the CPU to flash the standby LED in groups of repeating sequences. The number of blinks in these groups identifies which voltage or circuit caused the protection event.
Not all of the available protect codes are used. Models that are LED backlit do not use the 4-blink balancer error as this circuit is found in models that are backlit with fluorescent lamps. The following list contains the protect circuits and diagnostics codes used in the EX40B models.
2X: A loss of REG12V from the power supply triggers this protect event. The usual cause is a failure of the main switching supply. In some instances, excessive loading on the secondary supply lines can cause the switching regulator to stop, or fail again, if a replacement board is installed.
3X: The REG 5V and D3.3V source originating on the BAL board is monitored for low-voltage conditions by CPU IC5000. A failure causing a 3X shutdown would require replacement of the BAL board.
5X: A communications error with the high frame-rate or timing control circuits has occurred. Since both of these circuits are located on the TCON board, replacement of the board should remedy the problem. In rare cases a loose or defective LVDS cable could be the cause. If the TCON board is not available as a separate part, the entire LCD panel must be replaced.
6X: If the inverter circuits fail to generate high voltage or one or more of the backlight lamps fails to light, the television will shut down and display this diagnostics error.
7X: A digital thermometer IC located on the BAL board provides a temperature reading of the chassis and LCD panel. If the temperature exceeds a pre-determined point the unit will shut down. If this problem occurs immediately at turn-on, the temperature sensing IC has failed and replacement of the BAL board is required. If this occurs after the unit has been running for a while, check for ventilation issues that could cause the unit to run hotter than normal. The RGB light sensor located on the HLR board communicates with the CPU on the BAL board via the same I2C bus as the thermal sensor. If this component loads the bus it will create a 7X shutdown. Disconnecting CN001 from the HLR board and power the unit up from the manual power button is an effective way to isolate this condition. If the unit remains on, the HLR board must be replaced.
TCON Troubleshooting
LCD Panel Basics
LCD panels have steadily evolved over the last several years. New designs of the physical structure of the LCD crystals have greatly improved the contrast ratio and viewing angle. Quicker response times and increased refresh rates have helped to reduce the motion “smear” associated with LCD displays. Backlighting design has also aided in producing a picture with color temperatures to make the images as true as possible. With all these design improvements, one aspect of the LCD panel remains relatively the same: Processing of the video signal Figure bellow illustrates a typical LCD panel and the associated video processing circuits as found in the WAX3 chassis. The various formats and resolutions of video signals are processed on the BU1 board. All video signals exit the video processor in the native resolution of the LCD panel. In this design, the resolution is for a 1366 by 768 at 60HZ refresh rate panel. 48 horizontal lines are discarded to match up to the 720p resolution of the ATSC specifications so the video will exit as 720p. The LCD panel used in this model processes 8-bit RGB video data. Before the video information can be sent to the TCON board it must be converted to a format that allows for practical and noise-free transmission. The large number of parallel lines to transmit the 8-bit RGB data would need to be sent on differential lines for noise reduction. This would require 48 lines just for the video. The TCON circuit also requires B+, ground connections, a communications bus, sync, and a clocking line transmitted differentially so we can see that up to 60 lines would be required for an 8-bit video signal and significantly more lines for a 10-bit processor. The practical way to transmit this information is to convert the parallel video data to a serial stream and this is accomplished by the Low-Voltage Differential Signaling (LVDS) transmitter.
The LVDS transmitter contains a circuit to serialize the parallel data. The parallel video information along with sync and clocking data are transmitted via twisted line pairs. Depending on the logic level, current is sent along one or the other of the twisted pair of wires. The receiving end of the wires is loaded with a resistor (usually around 100 to 120 ohms). The receiver detects the polarity of the voltage drop across the resistor to determine the logic level. The current level swings in the wire are about 3ma with a voltage differential of around 350mv. This allows for transmission of the video signal with minimal EMI. The LVDS receiver on the TCON board converts the serialized data back to parallel. This data is processed by the timing control IC to allocate the RGB data into serial streams for processing by the LCD panel. The TCON transmits the pixel control data to the panel via flat, flexible circuit board cables which can number 2 or 4 depending on the bit rate and refresh timing of the panel. A 1366 X 768 panel requires about 180 lines to transmit control information and B+ from the TCON. This number of control lines is not even close to the number of horizontal or vertical rows of pixels so the LCD panel must use this information to further expand the ability to turn on each individual crystal. The process will be explained in the gate and source driver paragraphs. All of this is accomplished by the TCON board. The term “TCON” is short for Timing Control. Other LCD panel manufacturers may have a different name for this particular circuit but the term used by Sony will always be TCON.
LCD Panel Basics
LCD panels have steadily evolved over the last several years. New designs of the physical structure of the LCD crystals have greatly improved the contrast ratio and viewing angle. Quicker response times and increased refresh rates have helped to reduce the motion “smear” associated with LCD displays. Backlighting design has also aided in producing a picture with color temperatures to make the images as true as possible. With all these design improvements, one aspect of the LCD panel remains relatively the same: Processing of the video signal Figure bellow illustrates a typical LCD panel and the associated video processing circuits as found in the WAX3 chassis. The various formats and resolutions of video signals are processed on the BU1 board. All video signals exit the video processor in the native resolution of the LCD panel. In this design, the resolution is for a 1366 by 768 at 60HZ refresh rate panel. 48 horizontal lines are discarded to match up to the 720p resolution of the ATSC specifications so the video will exit as 720p. The LCD panel used in this model processes 8-bit RGB video data. Before the video information can be sent to the TCON board it must be converted to a format that allows for practical and noise-free transmission. The large number of parallel lines to transmit the 8-bit RGB data would need to be sent on differential lines for noise reduction. This would require 48 lines just for the video. The TCON circuit also requires B+, ground connections, a communications bus, sync, and a clocking line transmitted differentially so we can see that up to 60 lines would be required for an 8-bit video signal and significantly more lines for a 10-bit processor. The practical way to transmit this information is to convert the parallel video data to a serial stream and this is accomplished by the Low-Voltage Differential Signaling (LVDS) transmitter.
The LVDS transmitter contains a circuit to serialize the parallel data. The parallel video information along with sync and clocking data are transmitted via twisted line pairs. Depending on the logic level, current is sent along one or the other of the twisted pair of wires. The receiving end of the wires is loaded with a resistor (usually around 100 to 120 ohms). The receiver detects the polarity of the voltage drop across the resistor to determine the logic level. The current level swings in the wire are about 3ma with a voltage differential of around 350mv. This allows for transmission of the video signal with minimal EMI. The LVDS receiver on the TCON board converts the serialized data back to parallel. This data is processed by the timing control IC to allocate the RGB data into serial streams for processing by the LCD panel. The TCON transmits the pixel control data to the panel via flat, flexible circuit board cables which can number 2 or 4 depending on the bit rate and refresh timing of the panel. A 1366 X 768 panel requires about 180 lines to transmit control information and B+ from the TCON. This number of control lines is not even close to the number of horizontal or vertical rows of pixels so the LCD panel must use this information to further expand the ability to turn on each individual crystal. The process will be explained in the gate and source driver paragraphs. All of this is accomplished by the TCON board. The term “TCON” is short for Timing Control. Other LCD panel manufacturers may have a different name for this particular circuit but the term used by Sony will always be TCON.
Gate Drivers
Note the IC’s located along the side of the panel. These IC’s are mounted on a flexible cable(s) which are bonded to the LCD panel. Their function is to activate each row of pixels one at a time starting with the first line at the top. As each line is activated, the source drivers turn on the appropriate liquid crystals for the frame of video about to be displayed. This continues from top to bottom until the entire frame of video is displayed. The process is repeated for the next frame. This rate can vary from 60 times per second or be increased to 120 or 240 as found in the high-frame-rate panels.
Note the IC’s located along the side of the panel. These IC’s are mounted on a flexible cable(s) which are bonded to the LCD panel. Their function is to activate each row of pixels one at a time starting with the first line at the top. As each line is activated, the source drivers turn on the appropriate liquid crystals for the frame of video about to be displayed. This continues from top to bottom until the entire frame of video is displayed. The process is repeated for the next frame. This rate can vary from 60 times per second or be increased to 120 or 240 as found in the high-frame-rate panels.
Source Drivers
These IC’s provide the control voltages to turn on each RGB segment of the vertical rows of pixels. In this example, the panel has a horizontal resolution of 1366 pixels. Each pixel is made up of a red, green and blue liquid crystal which means there are 4,098 columns to control. The source drive IC’s contain shift registers along with buffer switches. Shift registers are used to convert serial data to parallel. By using this method, the TCON is able to transmit control information to each of the source drivers using serial data lines. If the TCON is transmitting 8-bit data to the panel, each data line is capable of controlling 256 lines exiting the source drivers. Understanding how the gate and source drivers work together makes it easier to observe a problem on the screen and determine if the failure is panel or TCON related.
These IC’s provide the control voltages to turn on each RGB segment of the vertical rows of pixels. In this example, the panel has a horizontal resolution of 1366 pixels. Each pixel is made up of a red, green and blue liquid crystal which means there are 4,098 columns to control. The source drive IC’s contain shift registers along with buffer switches. Shift registers are used to convert serial data to parallel. By using this method, the TCON is able to transmit control information to each of the source drivers using serial data lines. If the TCON is transmitting 8-bit data to the panel, each data line is capable of controlling 256 lines exiting the source drivers. Understanding how the gate and source drivers work together makes it easier to observe a problem on the screen and determine if the failure is panel or TCON related.
Diagnosing a Failed TCON
In order for this concept to move forward successfully, it is important that the service industry be able to properly identify the symptoms of TCON issues to avoid unnecessary service calls and repair costs. Accurate analysis of TCON failures will reduce costs significantly (both in parts costs and time) when warranty repairs are involved and will reduce the number of COD repairs that are lost.
In order for this concept to move forward successfully, it is important that the service industry be able to properly identify the symptoms of TCON issues to avoid unnecessary service calls and repair costs. Accurate analysis of TCON failures will reduce costs significantly (both in parts costs and time) when warranty repairs are involved and will reduce the number of COD repairs that are lost.
A good approach when determining a TCON failure is a good understandin of which symptoms ARE NOT caused by the TCON. Examples are as follows:
Video Process Failures: All video inputs received by the video process circuits are handled on a frame-by-frame basis. The video frames are converted and scaled to 8 or 10-bit RGB information. It is virtually impossible for the video process circuits to cause a problem on a specific area of the screen. Failures on this board usually appear as distortions, color level shifts, video level shifts, noise that involves the entire picture, or no picture at all. The TCON can generate symptoms that appear to be video process related but the video process circuits cannot produce the symptoms of a failed TCON circuit. LVDS Cable Failures: Although problems with the LVDS cable or connectors can generate symptoms of TCON failures this usually tends to be intermittent and wiggling of the connectors will usually provoke a change in the symptom on the screen. LVDS cables and connectors have become rather robust over the past few years and most problems are caused by technicians who damage them and this is generally quite obvious upon close examination. LCD Panel Failures: Some LCD panel failures could possibly be mistaken for TCON issues. Other than damage to the LCD glass, most panel failures are isolated to a particular area of the screen. Since the TCON disperses the pixel data to groups of line and column drive IC’s situated on the outer edges of the panel, it is unlikely that more than one of these IC’s would fail at the same time. Multiple columns of stuck on or stuck off pixels are, therefore, more likely to be the fault of the TCON circuits. The same applies to a single row of lit or unlit pixels. The TCON simply cannot cut out a single line of information.
Failures involving the LCD panel are usually displayed with the following symptoms:
# Physical damage such as cracks in the panel, a single pixel or group of pixels that always on or off, or random sections of the panel which are completely dark.
# Source driver failure. This symptom appears as a single vertical band around 1 to 2 inches (depending on the panel size) and can be black, white, or any other color. It can also contain video information with distortion. A single vertical line that is dark or colored. This may be due to a tab bonding failure from the IC to the panel but either cause requires the replacement of the panel.
# Gate driver failure. These IC’s operate in a “bucket brigade” fashion. As mentioned earlier, the gates drivers scan each horizontal line starting at the top. If any one of the gate drivers fails, all of the subsequent drivers below it will fail to operate properly. This symptom is usually indicated by normal video on the upper portion of the screen followed by distorted video from the point of the failed IC and downward.
# Any horizontal lines. The gate drivers are activated by a single source of timing information so any single horizontal line or groups or random horizontal lines are caused by an output failure from a gate driver or a loss of the tab bond to the panel.
# Physical damage such as cracks in the panel, a single pixel or group of pixels that always on or off, or random sections of the panel which are completely dark.
# Source driver failure. This symptom appears as a single vertical band around 1 to 2 inches (depending on the panel size) and can be black, white, or any other color. It can also contain video information with distortion. A single vertical line that is dark or colored. This may be due to a tab bonding failure from the IC to the panel but either cause requires the replacement of the panel.
# Gate driver failure. These IC’s operate in a “bucket brigade” fashion. As mentioned earlier, the gates drivers scan each horizontal line starting at the top. If any one of the gate drivers fails, all of the subsequent drivers below it will fail to operate properly. This symptom is usually indicated by normal video on the upper portion of the screen followed by distorted video from the point of the failed IC and downward.
# Any horizontal lines. The gate drivers are activated by a single source of timing information so any single horizontal line or groups or random horizontal lines are caused by an output failure from a gate driver or a loss of the tab bond to the panel.
TCON Failures
Failures in the timing control circuits of the TCON can produce symptoms of absolutely no video or generate lines and patterns that usually cover all or a substantial part of the screen. Determining if the TCON is thecause of a “no video” condition is a bit more difficult since there are no indications on the screen to analyze.
Troubleshooting a “DEAD” TCON
Many of the Sony television models over the last few years will detect a TCON that has completely failed. The communications data between the video process circuits and the TCON will cease to communicate if the TCON fails completely. This will cause the television to shut down and display a diagnostics code indicating a failure of the TCON. Not all chassis designs have this feature and it is not found on older models. The typical scenario when this failure arises is for the technician to bring a video process board to the repair location. It is usually safe to assume that the problem lies on the TCON board if the replacement video board does not remedy the problem since it is highly unlikely that a replacement board with the same failure was received. One trick to check most TCONS for functionality is to loosen the LVDS connector at the TCON (as shown In Figure 4-3) while the unit is turned on. Handle the LVDS connector with care and be certain to fully release the lock tabs. Gently rock the cable in and out of the connector while observing the screen for any response. Depending on the chassis, the symptoms of the screen may be gentle white flashes, intermittent colored lines, or a screen full of random patterns. The idea at this point is to provoke some kind of response on the screen. TCON boards that have failed will not usually generate any type of response on the screen. Another helpful procedure is to rapidly heat and/or cool the TCON with hot air devices or circuit coolant and watch for patterns to appear on the screen. Figure illustrates 2 examples of a loss of control data to the drive IC’s. In the first example, an entire group of column drivers has lost the data stream for red. The second example involves the complete loss of drive data for all RGB information to the right side of the screen. This is sometimes caused by the flat cable connecting the TCON to the LCD panel coming loose. The area of missing video can be dark or completely white depending on the panel design.
Failures in the timing control circuits of the TCON can produce symptoms of absolutely no video or generate lines and patterns that usually cover all or a substantial part of the screen. Determining if the TCON is thecause of a “no video” condition is a bit more difficult since there are no indications on the screen to analyze.
Troubleshooting a “DEAD” TCON
Many of the Sony television models over the last few years will detect a TCON that has completely failed. The communications data between the video process circuits and the TCON will cease to communicate if the TCON fails completely. This will cause the television to shut down and display a diagnostics code indicating a failure of the TCON. Not all chassis designs have this feature and it is not found on older models. The typical scenario when this failure arises is for the technician to bring a video process board to the repair location. It is usually safe to assume that the problem lies on the TCON board if the replacement video board does not remedy the problem since it is highly unlikely that a replacement board with the same failure was received. One trick to check most TCONS for functionality is to loosen the LVDS connector at the TCON (as shown In Figure 4-3) while the unit is turned on. Handle the LVDS connector with care and be certain to fully release the lock tabs. Gently rock the cable in and out of the connector while observing the screen for any response. Depending on the chassis, the symptoms of the screen may be gentle white flashes, intermittent colored lines, or a screen full of random patterns. The idea at this point is to provoke some kind of response on the screen. TCON boards that have failed will not usually generate any type of response on the screen. Another helpful procedure is to rapidly heat and/or cool the TCON with hot air devices or circuit coolant and watch for patterns to appear on the screen. Figure illustrates 2 examples of a loss of control data to the drive IC’s. In the first example, an entire group of column drivers has lost the data stream for red. The second example involves the complete loss of drive data for all RGB information to the right side of the screen. This is sometimes caused by the flat cable connecting the TCON to the LCD panel coming loose. The area of missing video can be dark or completely white depending on the panel design.
Service Tip: Select an inactive input (or one that is known to be a 4:3 SD source) and toggle between the “normal” and “zoom” modes. If the lines follow the zoom changes, the problem is located on the video process board. If they stay in the same place, they are originating in the TCON or LCD panel.
Thursday, June 30, 2016
SONY KDL-32R420 - How to activate Service mode - LED blinking codes and causes - Service mode adjustments - Lcd television repair and service - Service Tips
Category: LCD Television Repair and Service
Contents of this article
- How to enter to service mode
- LED blinking and causes
- Service adjustments
SONY KDL-32R420
HOW TO ENTERING SERVICE MODE
1) Turn on the main power switch to place this set in standby mode.
2) Press the buttons on the remote commander as follows, and entering service mode.
DISPLAY > CHANNEL 5 > VOLUME + > TV POWER
3) Service mode display. Note: First of all, when you enter Service Mode, you can see “Digital” service mode. Whenever you press “OPTIONS” or “JUMP” on remote, each service mode is changed. “Digital” -> “Chassis” -> “Sub”
WHITE BALANCE ADJUSTMENT
Change Data of “Digital” service mode. (“006 WB” category)
a. Press “0” or “10” on remote to enter WB adjustment mode.
b. Press number key “1”>”6” directly. “*” stamp move.
c. Press “12 / enter / select” to decide and advance next step. When returning on the previous page, press “return”.
d. Change data by number key “0”>”9” directly. (0-255)
e. Press “12 / enter / select” to save data. It shows red “WRITE”. It indicate writing is processing.
f. Writing process is done at this point.
SAVE CHANGING DATA
1) Change Data of “Chassis” or “Sub” service mode
2) Write data for “Chassis” or “Sub” service mode
a. Press “Mute” on remote. It shows green “SERVICE” changes to green “WRITE”.
b. Press “0” or “enter” on remote. Green “WRITE” changes to red “WRITE”. It indicate writing is processing.
c. After a while, red “WRITE” changes to green “SERVICE”. Writing process is done at this point.
3) TV reboot is necessary for applying data change.
CHANGE DATA
Note: “Digital” service mode don’t have to Save. (except “002 MODEL” category)
1) Change Data of “Digital” service mode. (except “003 DIG_SRV_MODE” category)
a. Press “2 / 5” on remote to select (up / down) category.
b. Press “1 / 4” on remote to select (up / down) Item. c. Press “0 / 10” on remote to select item.
2) Change Data of “Digital” service mode. ( “003 DIG_SRV_MODE” category) “003 DIG_SRV_MODE” is one category of “Digital” service mode. Please note because this operation is special.
a. Press “2 / 5” on remote to select “003 DIG_SRV_MODE”.
b. Press “1 / 4” on remote to select (up / down) Item.
c. Press “0 / 10” on remote to select item.
d. Press number key “1”>”9” directly. “*” stamp move.
e. Press “12 / enter / select” to decide and advance next step. Press “return”, when returning on the previous page.
3) Write data for “Digital” service mode. ( “002 MODEL” category) Note: This procedure operation, when replaced the B board. Note: Do not write a wrong segment or destination information in Product ID. When the wrong setting is written, TV may not operate.
000 SEG ....Product ID - segment information
001 DEST.....Product ID – destination information
a. Change data for each model.
b. Press “0” or “enter” on remote. It shows red “WRITE”. It indicate writing is processing.
c. Writing process is done at this point.
SET TO SHIPPING CONDITION
How to do shipping condition.
a. Move to “Digital” service mode.
Press “8” on remote.
It shows green “SERVICE” changes to green “RST-”.
Press “mute” on remote.
Added green “EXE” after green “RST-” .
d. Press “0” or “enter” on remote. Green “EXE-RST” changes to red “EXE-RST”. It indicate writing is processing.
After a while, red “EXE-RST” changes to green “SERVICE”.
And all LED lights.
Writing process is done at this point.
SELF DIAGNOSIS FUNCTIONThe units in this manual contain a self-diagnostic function. If an error occurs, the STANDBY LED will automatically begin to flash. The number of times the LED flashes translates to a probable source of the problem. A definition of the STANDBY LED flash indicators is listed in the instruction manual for the user’s knowledge and reference. If an error symptom cannot be reproduced, the remote commander can be used to review the failure occurrence data stored in memory to reveal past problems and how often these problems occur.
DIAGNOSTIC TEST INDICATORS
When an error occurs, the STANDBY LED will flash a set number of times to indicate the possible cause of the problem. If there is more than one error, the LED will identify the first of the problem areas. Result for all of the following diagnostic items are displayed on screen. If the screen displays a “0”, no error has occurred .
LED BLINKING AND POSSIBLE CAUSES
LED BLINKING AND POSSIBLE CAUSES
STBY LEDFlash time | Service menu Item name (Screen Display) | Diagnostic Item Description |
2 | MAIN_POWE | Main Power Over Voltage Protection |
3 | DC_ALERT | DC_ALERT |
DTT_WDT | DTT Error | |
AUD_PROT | Audio Abnormal Detection | |
4 | BALANCER_ | Panel Balancer Error |
5 | TCON_ERR | T-CON Error |
HFR_ERR | HFR Error | |
P_ID_ERR | Panel ID NVM Error | |
6 | BACKLITE_ | Back Light Error |
7 | TEMP_ERR | Thermal Error |
FAN_ERR | FAN Error | |
8 | - | Not used |
9 | - | Not used |
10 | - | Not used |
11 | - | Not used |
12 | - | Not used |
- | RGB_SEN | RGB Sensor ACK Error |
SELF-DIAGNOSTIC SCREEN DISPLAY
For errors with symptoms such as “power sometimes shuts off” or “screen sometimes goes out” that cannot be confirmed, it is possible to bring up past occurrences of failure for confirmation on the screen:
To Bring Up Screen Test
In standby mode, press buttons on the remote commander sequentially in rapid succession as shown below:
To Bring Up Screen Test
In standby mode, press buttons on the remote commander sequentially in rapid succession as shown below:
DISPLAY > CHANNEL 5 > VOLUME – > TV POWER
Since the diagnostic results displayed on the screen are not automatically cleared, always check the self-diagnostic screen. After you have completed the repairs, clear the result display to “0”. Clearing the Self Check Diagnostic List 1. Error history and Error count : Press the Channel 8 => Channel 0 . 2. Panel operation time : Press the Channel 7 => Channel 0 .
Exiting the Self-diagnostic screen
Exiting the Self-diagnostic screen
To exit the Self Diagnostic screen, turn off the power to the TV by pressing the POWER button on the remote or the POWER button on the TV.
Subscribe to:
Posts (Atom)